Core Francisco Park

Website: cfpark00.github.io Email: corefranciscopark@g.harvard.edu GitHub: github.com/cfpark00

EDUCATION

Harvard University Ph.D. Candidate in Physics, GPA: 3.945/4.0 Advisors: Aravinthan Samuel, Hidenori Tanaka, Douglas Finkbeiner, Cecilia Garr	Cambridge, MA, U.S.A. 2019–Current affo
SNU Graduate Coursework	Seoul, South Korea 2019
KAIST B.S. in Physics, Advanced Major, GPA: 4.08/4.3, Summa Cum Laude	Daejeon, South Korea 2015–2019
 Thesis: "Real time DAQ setup and dead-time measurement for CAPP 18TDark Ma first results", Advisor: Prof. Jonghee Yoo 	tter Axion Search and its
– Focus: Astro-Particle Physics, Computational Physics, Biophysics	
Ecole Polytechnique	Palaiseau, France

Ecole Polytechnique

Exchange Student

- Data Structure, Numerical Analysis

EMPLOYMENT

NTT Research Research Intern Supervisor: Hidenori Tanaka

- Project: Understanding Mechanisms and Capabilities of AI

Understanding Mechanisms and Capabilities of AI

CURRENT PROJECTS

Advisor: Hidenori Tanaka, Ekdeep Singh Lubana	Feb. 2024–Current
– Understanding mechanisms and drivers of phase changes of In-Context Learning	g: Understanding
how AI models transition between different mechanisms for in-context learning depending o	n the data
distribution and design choices.	

- Understanding inference scaling: Understanding how in-context exemplars shape large language model's representation and mechanisms.
- Understanding Hidden Emergence of Capabilities: Understanding hidden emergence of capabilities in text-to-image generative models, showed a hidden phase transition of a compositional capability.

Ι)e	$\mathbf{e}\mathbf{p}$	Lea	rnir	ıg	and	Co	mp	ou	tei	ſ	Vision	for	Neur	oscier	ıce
					-	-					-					

Advisor: Aravinthan Samuel, Jeff Lichtman

Harvard University Aug. 2020–Current

Sunnyvale, CA, U.S.A. Jul. 2024–Sep. 2024

Harvard University

2017

- Few-Shot 3D Volumetric Tracking: I implemented "targettrack", enhancing modern CNN's data efficiency by capture the global manifold structure of the data. This enabled the 3D tracking of individual neurons with minimal manual annotation.
- Smart Electron Microscopy: Machine Learning Driven Accelerated Connectomics: I used real-time, uncertainty aware machine learning to accelerate Electron Microscopy acquisition of brain sections for connectomics by actively allocating acquisition budget to sensitive areas. I achieved a 7x speedup of acquisition without loss of segmentation accuracy.

Machine Learning for Climate Change and Air Quality Monitoring Advisor: Cecilia Garraffo, Douglas Finkbeiner

- MethaneSAT: I am working on analyzing data efficiently using data driven spectral models to find clouds, shadows and methane plumes in hyperspectral image data.
- TEMPO: I am working on developping a convolutional VAE to jointly compress and segment hyperspectral data from TEMPO. The goal is to enhance prediction of NO densities, which is a major public health concern.

PAST PROJECTS

Emulating the structure of the universe using diffusion models With: Carolina Cuesta-Lazaro

- Large Scale Structure Emulation: I am working on emulating the large scale structure of the universe using denoising diffusion probabilistic models.
- Probabilistic Debiasing: I am working on generating a probabilistic distribution over dark matter fields consistent with a given galaxy distribution.
- Probabilistic Completion: I am working on statistically motivated inpainting of fields for robust and unbiased astrophysical statistics.

Whole Brain Imaging

Advisor: Aravinthan Samuel

 C. elegans Thermotaxis: I worked on understanding the mechanism of the thermotactic behavior of *C. elegans*, revealing target neurons: AFD, BAG, RIA and revealing its connection to the gut's calcium signaling via pkc-2.

Astro-statistics

Advisor: Douglas Finkbeiner

- Fourier space sparse Wavelet Scattering Transform on the GPU: Developped a high speed wavelet scattering transform on the GPU using sparse representations of wavelets in Fourier space.
- Quantifying the validity of high-dimensional statistics: High-dimensional Gaussianity tests have revealed that the constraints on cosmological parameters from Fisher forecast are sometimes under-estimated.
- Estimating correlations of Large Scale structure and galactic dustmaps: Developped an error estimation scheme of correlations of the large scale structure of the universe and galactic dustmaps using mock-rotated universes.

Experimental Particle Physics

Advisor: Jonghee Yoo

 Real-time DAQ system for the CAPP18T Axion Dark Matter Experiment: I worked on developping a real time DAQ system with minimal dead-time for the CAPP18T Axion Dark Matter Experiment

PUBLICATIONS

First authors are marked with a *.

Harvard University Aug. 2023–Aug. 2024

Harvard University

Sep. 2023–Current

Harvard University Apr 2021–May 2023

Harvard University Sep. 2020–Oct. 2022

KAIST Dec. 2018–Feb. 2019

5.1 First Author or Significant Contribution

- 1. C.F. Park*, E.S. Lubana, H. Tanaka; "Algorithmic Phases of In-Context Learning"; under review
- 2. C.F. Park*, A. Lee*, E.S. Lubana*, Y. Yang, M. Okawa, K. Nishi, M. Wattenberg, H. Tanaka; "In-Context Learning of Representations"; *under review*
- 3. Y. Yang^{*}, C.F. Park, E.S. Lubana, M. Okawa, W. Hu, H. Tanaka; "Dynamics of Concept Learning and Compositional Generalization"; *under review*
- 4. C.F. Park*, A. Lee*, E.S. Lubana, Y. Yang, K. Nishi, M. Okawa, H. Tanaka; "Structured In-Context Task Representations"; *under review*
- 5. C.F. Park*, E.S. Lubana, H. Tanaka; "Understanding the Transient Nature of In-Context Learning: The Window of Generalization"; accepted to NeurIPS 2024 Workshop on Scientific Methods for Understanding Deep Learning
- 6. C.F. Park*, M. Okawa*, A. Lee, E.S. Lubana, H. Tanaka; "Emergence of Hidden Capabilities: Exploring Learning Dynamics in Concept Space"; NeurIPS 2024 Spotlight
- C.F. Park*, M. Okawa, A. Lee, E.S. Lubana, H. Tanaka; "Hidden Learning Dynamics: Capability Emerges Before Behavior in Compositional Generalization"; ICML 2024 Workshop on High-dimensional Learning Dynamics, Jul 2024
- C.F. Park*, N. Mudur, C. Cuesta-Lazaro, Y. Ni, V. Ono, D.P. Finkbeiner; "3D Reconstruction of Dark Matter Fields with Diffusion Models: Towards Application to Galaxy Surveys"; ICML 2024 Workshop: AI for Science, Jul 2024
- V. Ono^{*}, C.F. Park, N. Mudur, Y. Ni, C. Cuesta-Lazaro, F. Villaescusa-Navarro; "Debiasing with Diffusion: Probabilistic reconstruction of Dark Matter fields from galaxies with CAMELS"; The Astrophysical Journal 970 (2), 174, Jul 2024
- C.F. Park*, M.B. Keshteli*, K. Korchagina, A. Delrocq, V. Susoy, C.L. Jones, A.D.T. Samuel, S.J. Rahi; "Automated neuron tracking inside moving and deforming animals using deep learning and targeted augmentation"; *Nature Methods*, Jan 2024
- C.F. Park*, V. Ono, C. Cuesta-Lazaro, Y. Ni, N. Mudur; "Probabilistic reconstruction of Dark Matter fields from galaxies using diffusion models"; NeurIPS 2023 Workshop on Machine Learning and the Physical Sciences, arxiv, Oct 2023
- 12. C.F. Park*, C. Garraffo; "Hyperspectral shadow removal with iterative logistic regression and latent Parametric Linear Combination of Gaussians"; NeurIPS 2023 Workshop on Tackling Climate Change with Machine Learning, arxiv, Oct 2023
- Y. Meirovitch*, C.F. Park*, L. Mi*, P. Potocek*, S. Sawmya, Y. Li, Y. Wu, R. Schalek, H. Pfister, R. Schoenmakers, M. Peemen, J.W. Lichtman, A.D.T. Samuel, N. Shavit; "SmartEM: machine-learning guided electron microscopy"; *Under Review at Nature Methods*, Oct 2023
- 14. N. Mudur^{*}, C.F. Park, D.P. Finkbeiner; "Stellar Reddening Based Extinction Maps for Cosmological Applications"; The Astrophysical Journal 949 (2), 47, May 2023
- 15. C.F. Park*, E. Allys, F.V. Navarro, D.P. Finkbeiner; "Quantification of high dimensional non–Gaussianities and its implication to Fisher analysis in cosmology"; The Astrophysical Journal 946 (2), 107, Apr 2023
- 16. C.F. Park*; "Real time DAQ setup and dead-time measurement for CAPP 18T Dark Matter Axion Search and its first results"; B.S. Thesis; Dec 2018

5.2 Contributing Authored Publications

- Y. Li^{*}, C.F. Park, D. Xenes, C. Bishop, D.R. Berger, A.D.T. Samuel, B. Wester, J.W. Lichtman, H. Pfister, W. Li, Y. Meirovitch; "EM-Compressor: Electron Microscopy Image Compression in Connectomics with Variational Autoencoders"; bioarxiv, Jul 2024
- E.C. Pavarino^{*}, E. Yang^{*}, N. Dhanyasi, M. Wang, F. Bidel, X. Lu, F. Yang, C.F. Park, M.B. Renuka, B. Drescher, A.D.T. Samuel, B. Hochner, P.S. Katz, M. Zhen, J.W. Lichtman, Y. Meirovitch; "mEMbrain: an interactive deep learning MATLAB tool for connectomic segmentation on commodity desktops"; Front. Neural Circuits Vol 17, June 2023
- 3. L. Mi^{*}, T. He^{*}, C.F. Park, H. Wang, Y. Wang, N. Shavit; "Revisiting Latent-Space Interpolation via a Quantitative Evaluation Framework"; arxiv, Oct 2021
- 4. V. Susoy^{*}, W. Hung, D. Witvliet, J.E. Whitener, M. Wu, C.F. Park, B.J. Graham, M. Zhen, V. Venkatachalam, A.D.T. Samuel; Natural sensory context drives diverse brain-wide activity during C. elegans mating; Cell, Sep 2021

TALKS & ORAL PRESENTATIONS

- 1. C.F. Park; "Scaling and In-Context Learning of Large Language Models"; NTT Physics&Informatics Laboratory Journal Club, Slides, July 2024
- 2. C.F. Park; "Probabilistic Completion of Astrophysical Fields for Robust Statistics with Diffusion Models"; EAS 2024, Padova; Jul 2 2024; Slides
- 3. C.F. Park; "3D probabilistic reconstruction of the local dark matter from galaxies", Astro AI Workshop 2024, Center for Astrophysics; Jun 20 2024; Video; Slides
- 4. C.F. Park; "Debiasing with Diffusion: Probabilistic reconstruction of Dark Matter fields from galaxies"; *ITC Lucheon Talk, Center for Astrophysics*; Mar 7 2024; Video; Slides
- 5. C.F. Park; "Reconstruction of the local dark matter using diffusion models"; Workshop on AI-driven Discovery in Physics and Astrophysics at Kavli IPMU; Jan 23 2024; Slides
- 6. C.F. Park; "Diffusion Models for Cosmology"; AstroAI Lunch Talk, Center for Astrophysics; Oct 30 2023; Slides
- 7. C.F. Park; "How is AI used in the Physical Sciences?"; Hansung Science High School Mentoring Talk @ Harvard University; Oct 13 2023; Slides (Korean)
- 8. C.F. Park; "Mstar2Mcdm using Diffusion Models: Generating Cold Dark Matter density fields conditioned on stellar mass fields using Denoising Diffusion Probabilistic Models"; *Camels Virtual Telecoms hosted by the Flatiron Institute*, Sep 20 2023; Slides
- C.F. Park, S. Rahi, A.D.T. Samuel, M.B. Keshteli, K. Korchagina, A. Delrocq, V. Susoy, C. Jones; "Automated neuron tracking using deep learning and targeted augmentation allows fast collection of C. elegans whole brain calcium activity during behavior", *American Physical Society March Meeting 2023*
- 10. C.F. Park, Erwan Allys, Francisco Villaescusa-Navarro, Douglas Finkbeiner; "On the Gaussianity of Non-Gaussian probes of Large Scale Structure"; American Astronomical Society 240 (2022)
- 11. C.F. Park; "Dark Matter Axion Search Experiment using 18T HTS Magnet"; Stockholm International Youth Science Seminar 2018; Video

POSTER PRESENTATIONS

1. C.F. Park, E.S. Lubana, H. Tanaka; "Emergence of In-Context Learning Beyond Bayesian retrieval: A mechanistic study"; New England Mechanistic Interpretability Workshop 2024, Aug 2024

- C.F. Park, M. Okawa, A. Lee, E.S. Lubana, H. Tanaka; "Hidden Learning Dynamics: Capability Emerges Before Behavior in Compositional Generalization"; *NeurIPS 2023 Workshop on Machine Learning and the Physical Sciences*, ICML 2024 Workshop on High-Dimensional Learning Dynamics, Jul 2024
- 3. C.F. Park, N. Mudur, C. Cuesta-Lazaro, Y. Ni, V. Ono, D.P. Finkbeiner; "3D Reconstruction of Dark Matter Fields with Diffusion Models: Towards Application to Galaxy Surveys"; ICML 2024 Workshop: AI for Science, Jul 2024
- 4. C.F. Park, V. Ono, C. Cuesta-Lazaro, Y. Ni, N. Mudur; "Probabilistic reconstruction of Dark Matter fields from galaxies using diffusion models"; NeurIPS 2023 Workshop on Machine Learning and the Physical Sciences, Dec 2023
- 5. C.F. Park, M. Nasr, M. Perez-Carrasco, E. Walker, D. Finkbeiner, C. Garraffo, "Hyperspectral shadow removal with iterative logistic regression and latent Parametric Linear Combination of Gaussians", NeurIPS 2023 Workshop on Tackling Climate Change with Machine Learning, Dec 2023
- C.F. Park, Y. Meirovitch, P. Potocek, S. Sawmya, Y. Li, R. Schalek, J.W. Lichtman, M. Peeman, A.D.T. Samuel, N. Shavit, "SmartEM: Faster Connectomics Using Deep Error Prediction Based Rescanning"; ICML 2023 Workshop for Computational Biology, Jul 2023
- 7. C.F. Park, H. Casademunt, V. Susoy, A.D.T. Samuel, "Freely Moving Whole Brain Imaging of C. elegans under a thermal stimulus", *International C.elegans conference 2023*, Jun 2023
- C.F. Park, M.B. Keshteli, Vladislav Susoy, K. Korchagina, A. Delrocq, A.D.T. Samuel, S.J. Rahi, "Automated neuron tracking inside moving and deforming animals using deep learning and targeted augmentation", COSYNE 2023, Mar 2023
- C.F. Park, K. Kim, J. Yoo "Data acquisition system for dark matter Axion search experiment using 18 T HTS magnet at CAPP/IBS", Korean Physical Society Meeting 2018, Oct 2018

REVIEWING

•	NeurIPS 2024 Workshop on Scientific Methods for Understanding Deep Learning (4 papers)	2024
•	ICML 2024 Workshop on Mechanistic Interpretability (3 papers)	2024
•	ICLR 2024 Workshop on Tackling Climate Change with Machine Learning (4 papers)	2024

Scholarships

• Purcell Fellowship, Harvard University	2019-2020
• Doctoral Study Abroad Scholarship, KFAS	2019–Current
• Physics Department Honorary Scholarship, KAIST	2018
• Undergraduate Student Scholarship, KFAS	2017-2019
• Korea Presidential Science Scholarship, KOSAF	2015–2019
• Full Tuition Scholarship, KAIST	2015–2019

AWARDS

•	Second Place in Citadel Datathon, Virtual	2023
•	Best Machine Learning Project Award, KIAS	2019
•	Summa Cum Laude, KAIST	2019
•	Best Project Award Physics Winter Camp, KIAS	2018
•	Dean's List, KAIST Physics	2017
•	Best Buddy Award, KAIST International Office	2016
•	Fall Dean's List, KAIST	2015
•	Spring Dean's List, KAIST	2015

EXTRACURRICULAR ACTIVITIES

• KITP Neurophysics of Locomotion School Summer Student	2022
• APCTP-POSTECH Biophysics School Summer Student	2019
• KIAS-SNU Physics Winter Camp Best Project Award: Accretion of Supermassive Black Holes	2018
• Stockholm International Youth Science Seminar Korean Representative	2018
• APCTP-NIMS-KISTI-KASI Summer School on Numerical Relativity, Summer Student	2018
• APCTP-POSTECH Biophysics School Summer Student	2018
• KAIST International Discovery Program Selected Team	2017
Asian Science Camp Korean Representative	2014
Molecular Frontiers Symposium School Representative	2013

TEACHING

• Teaching Fellow at Harvard University	Spring 2022
 Physics as a Foundation for Science and Engineering Teaching Fellow at Harvard University 	Fall 2021
Physics of Sensory systems	
• Teaching Assistant at Seoul National University <i>Physics Lab I</i>	Spring 2019
• General Physics Tutor at KAIST General Physics 2	Fall 2018
General Physics Tutor at KAIST General Physics 1	Spring 2018
• General Physics Tutor at KAIST General Physics 1	Spring 2017
General Physics Tutor at KAIST General Physics 2	Fall 2016
General Physics Tutor at KAIST General Physics 1	Spring 2016

Skills& Background

- Experience with Diverse Working Environment: Collaborative, Individual, Project Management, Code-Contributor, Software-Engineering
- **Computational Methods:** GPU and CUDA computation, Fourier Analysis, Time Series, Bayesian Inference, High Performance Computing, Data Structure, Human-Computer Interfacing

- ML/AI Methods: Probabilistic Deep Learning, Diffusion Models, Statistical Machine Learning, Uncertainty-Aware Machine learning.
- Experimental: DAQ, Hardware control, Automation, PID Control, Optics, Microscopy, Simple Genetics
- **Programming Languages:** Python (advanced), Julia (advanced), LabView (intermediate), Matlab (intermediate), Java (basic), C++ (basic), C (basic), HTML (basic)

LANGUAGES

- Korean: Native
- English: Native
- **TOEFL:** 114/120
- **TOEIC:** 985/990
- French: Semi-Native
- **TCF:** 599 C1/C2/C1
- **Spanish:** Novice

References

Research Advisor: Hidenori Tanaka hidenori_tanaka@fas.harvard.edu	NTT Research at Harvard University, 2024–Current
Research Advisor: Cecilia Garraffo cgarraffo@cfa.harvard.edu	Center for Astrophysics, 2023–Current
• Past Research Advisor: Aravinthan Samuel samuel@g.harvard.edu	Harvard University, 2021–2023
Research Advisor: Douglas Finkbeiner dfinkbeiner@cfa.harvard.edu	Harvard University, 2020–Current
Past Research Advisor: Daniel Eisenstein deisenstein@cfa.harvard.edu	Harvard University, 2019–2021
• Past Research Advisor: Jonghee Yoo yoo.jonghee@kaist.ac.kr	KAIST, 2018–2019
• Past Academic Advisor: Hawoong Jeong <i>hjeong@kaist.edu</i>	KAIST, 2015–2019